
Iterators can be Independent “from” Their Collections

John Boyland
Nanjing University, China

University of Wisconsin-Milkaukee, USA
boyland@cs.uwm.edu

William Retert Yang Zhao
University of Wisconsin-Milwaukee, USA

williamr@cs.uwm.edu yangzhao@cs.uwm.edu

Abstract
External iterators pose problems for alias control mechanisms: they
have access to collection interals and yet are not accessible from
the collection; they may be used in contexts that are unaware of the
collection. And yet iterators can benefit from alias control because
iterators may fail “unexpectedly” when their collections are mod-
ified. We explain a novel aliasing annotation “from” that indicates
when a collection intends to delegate its access to internals to a new
object and how it can be given semantics using a fractional permis-
sion system. We sketch how a static analysis using permissions can
statically detect possible concurrent modification exceptions.

1. Introduction
Iterators in JavaTMand related languages are objects that give se-
quential access to collections, while being external to the collec-
tion. In particular, multiple iterators can operate on a collection at
the same time, and the collection is not directly involved in the
operation of iterators. Iterators are an improvement over previous
related concepts, such as cursors, precisely because of this inde-
pendence. Typically a collection only had one cursor, and moving
the cursor had an effect on the collection. Multiple cursors are pos-
sible but hard to manage. Noble [18] has surveyed a wide variety
of iterator architectures; we focus here on “external iterators.”

An iterator is originally created by the collection, but after
creation, it may be used in contexts in which the collection is
neither visible nor in scope. The very independence that makes
iterators so powerful also makes programs that use them more
complex because of the interactions, notably aliasing, between the
collection and the iterators. In particular, an iterator typically has
pointers into the internals of the collection representation, and may
even perform changes on this representation.

Figure 1 gives two interface declarations for the kinds of itera-
tors that will be discussed in this paper. In Java, these interfaces are
conflated by making remove an optional operation. In this work, to
make it easier to reason about iterators and to make the distinction
visible in the type system, we use separate interfaces. C++ simi-
larly makes a type-level distinction between iterators that can be
used to modify a collection and those that cannot. Other kinds of
iterators (such as ListIterators that can change an element in a
collection) could be defined. We will use the term mutating iterator
to refer to generally to any iterator that can modify the underlying
collection.

Additionally, we have annotated the iterator methods with
“method effects” indicating what state the methods are intended
or permitted to access. We will assume that all methods are so an-
notated. In this case, the methods are declared as accessing only
the state of the iterator and not reading or writing any other state.
The fact that we can mask away the effects on the collection is
non-trivial and is one of the main discussion topics of this paper.

interface Iterator {

reads(this.All)

boolean hasNext();

writes(this.All)

Object next();

}

interface RIterator

extends Iterator {

writes(this.All)

void remove();

}

Figure 1. Two classes of iterators.

class App {

this List list = new List();

...

writes(All) void run() {

Iterator it = list.iterator();

... What if we mutate list?
if (Util.member(null,it)) { ... }

}

}

Figure 2. Using an iterator.

Normally, we will follow standard OO convention and abbreviate
this.All as All , since All is a (model) instance field.

Figure 2 shows an example of using iterators. It uses classes
List and Util defined in the following section. The example in-
cludes some omitted code that may or may not mutate the collec-
tion. A collection may be changed directly using a method such
as clear or add, as well as indirectly through a mutating iterator.
When this happens, all iterators currently active on the collection
(excepting only the iterator through which the mutation took place,
if any) are potentially invalid: they may be referring to internals that
have been discarded or are otherwise reorganized. For instance, if a
linked list is cleared, then existing iterators may refer to nodes that
are (otherwise) garbage, and indeed in a language such as C++,
the node may have already been returned to the memory allocation
system. If a new entry is added to a hash table, an existing itera-
tor may find its node pointer has been rehashed to a new location
and continuing the iteration may result in repeating some elements
previously encountered, and omitting others. In C++, the program-
mer is warned by the documentation that existing iterators may be
“invalid” after a mutation.

It is possible to implement iterators so that they are robust in
the face of change, albeit with some additional complexity. In Java,
rather than following this route or letting a potentially confusing sit-

37

uation emerge, a fail fast semantics is used: an iterator will (almost)
always detect when a mutation outside of its control has happened,
and throw a ConcurrentModificationException (CME) if it is
used afterwards. Typically this is implemented by version stamp-
ing the iterator and collection, but the implementation details are
not the focus here. Instead we are interested in how static alias con-
trol mechanisms can (1) describe external iterators, (2) explain the
effects of using a (mutating) iterator, (3) explain why and when
concurrent modification exceptions are thrown, and (4) statically
prevent these exceptions from occurring.

In the following section, we look at a linked list class with
iterators annotated to express the design intent of the aliasing. Then
in Sects. 3 and 4, we look at previously described alias control
systems and evaluate them by these four criteria. In Section 5, we
describe how the design intent of the example can be expressed
using our “fractional permission” system.

2. Example
Figure 3 defines a simple linked list class with two kinds of itera-
tors. The code is annotated (italic words) with “design intent”
showing how aliases are intended to be controlled. Except for from
(explained below), these annotations have appeared in one form or
another in previous work. The example also uses class parameters
(inside < >) to pass objects that may be used in annotations on
fields of the class. For simplicity, we don’t make use of generic
classes (as in Java 5), although it has been shown that one can
fruitfully use both class parameters for ownership and for generic
classes [19].

Every field, parameter or return value is annotated by an aliasing
annotation: shared (owned by the global context), name (owned
by name), readonly- name (read-only state owned by name),
from(...) (explained below). Another possibility is unique ,
not used here. The default is borrowed , which can be applied
only to parameters (including method receivers), which means the
method can only access state from the parameter (receiver) if the
state is present in the method effect. A method effect is of the form
reads(...) or writes(...) and permits the method access the
mutable state named; write access includes read access. Here All
means all state of this object, or any object owned by it (transi-
tively). Constructors are implicitly permitted to write any part of
the constructed object’s state.

For example, the add method of class List is annotated
writes(All) which permits it to read or write any field of the
list object (or its nodes, which it owns). Here it simply updates the
head field. The parameter is shared which means there is no alias
control intended here.

Next consider the iterator() method. Its effect reads(All)
permits it to read any field or node of the list. The return value is
annotated from(All) which means that the iterator is “unique”
(unaliased with anything else) but that it gets (some of) its state
from the method effect on All . The idea is that the collection
temporarily yields its own state to the iterator, an independent (even
unique) object. Indeed, the iterator becomes the owner of the (read-
only) state of this list, as can be seen by the annotation on the
parameter list of class ListIter.

We will continue with Figure 3, but first glance at Figure 4
which shows how code can use the iterator without reference to
the collection. Methods member and removeAll both take iterators
and are annotated that they modify the iterator (writes(it.All))
and nothing else.

Back at Figure 3, looking at class ListIter, one sees that
field cur points to a node owned by list. The method next() is
allowed to access the cur.next field because through its read-
only ownership of the list, the iterator has read-only access to the
internals.

class ListNode<owner> {

owner ListNode<owner> next;

shared Object datum;

ListNode(shared Object d, owner Node n)

{ datum = d; next = n; }

}

class List {

this ListNode<this> head;

List() { head = null; }

writes(All) void add(shared Object datum)

{ head = new ListNode<this>(datum,head); }

writes(All) void clear() { head = null; }

reads(All) from(All) Iterator iterator()

{ return new ListIter<this>(head); }

writes(All) from(All) RIterator riterator()

{ return new ListRemoveIter<this>(this); }

}

class ListIter<readonly-this list>

implements Iterator {

list ListNode cur;

Iterator(list ListNode head) { cur = head; }

reads(All) boolean hasNext()

{ return cur!=null; }

writes(All) shared Object next()

{ if (cur == null) return null;

Object temp = cur.datum;

cur = cur.next;

return temp; }

}

class ListRemoveIter<this list>

extends ListIter<list> implements RIterator {

this List list; // MUST == class parameter list

list ListNode prev, last;

RIterator(this List list) // MUST == class param. list

{ super(list.head); this.list = list; }

writes(All) shared Object next()

{ prev = last; last = cur;

return super.next(); }

writes(All) void remove()

{ if (prev == null) list.head = cur;

else prev.next = cur;

last = prev; }

}

Figure 3. Listed list with iterators annotated with design intent.

38

class Util {

writes(it.All)

static boolean member(Object x, Iterator it)

{ while (it.hasNext())

{ if (it.next() == x) return true; }

return false; }

writes(it.All)

static void removeAll(Object x, RIterator it)

{ while (it.hasNext())

{ if (it.next() == x) it.remove(); } }

}

Figure 4. Independence of iterators.

class Iterator2 implements Iterator {

this Iterator it1, it2;

Iterator2(this Iterator it1,

this Iterator it2) { ... }

reads(All) boolean hasNext()

{ return it1.hasNext()||it2.hasNext();}

writes(All) shared Object next()

{ return it1.hasNext() ?

it1.next() : it2.next(); }

}

Figure 5. Constructing iterators using iterators.

The remove iterator ListRemoveIter extends the ListIter
class with three more fields. The first field shares the same name
as the class parameter and must indeed be the same (identical)
pointer. The new fields are implicitly included in All and thus
the overriding of next() is permitted to access the prev and
next fields. More importantly ListRemoveIter requires that it be
made (temporary) owner of the collection (for both read and write
access). The remove() method uses this ownership to perform
modifications to the list under the effect writes(All) .

What about the problems with concurrent modification? In Fig-
ure 2, the run() method gets an iterator and after some time uses
it to check for nulls in the list. If there is an intervening modifi-
cation, the call to member would “fail fast” with Java iterators. In
this case, the design intent indicates that the iterator it has (tem-
porarily) taken over read-only ownership of the list; if we permit
a write of the list to happen, we are indeed permitting a write to
occur concurrently with a read, a classic error.

According to the annotation, therefore, the list may not be
mutated until the iterator is no longer in use. Dually, write access is
permitted only at the cost of disallowing any later use of the iterator.
With a mutating iterator, even read access is prohibited until when
the mutating iterator is done, or dually, the mutating iterator may
not be used once any (even read) access is performed.

One reason to permit the iterator to be used separately from the
collection is to support existing code patterns. Examining the open-
source Eclipse project for uses of iterators, we have found some
cases of interest. One example (greatly simplified here) concerns
building an iterator that is constructed from other iterators (see Fig-
ure 5). The compound iterator indirectly takes over the (temporary,
read-only) ownership of the collections’ internals (there may be
more than one collection involved). Again this means that effects

class OtherCollection {

this LinkNode<this> head;

...

reads(All) from(All) Iterator iterator()

{ return new List(head).iterator(); }

}

Figure 6. Delegating iterator creation.

on the element iterators are mapped into effects on the compound
iterator.

Figure 6 shows another pattern, whereby a class does not imple-
ment its own iterators and instead creates an instance of a collection
and gets an iterator for it. (Here we assume a new constructor for
List that takes a read-only list of nodes.) In the code we saw with
this pattern, the delegation involved creating a List around an ex-
isting array.

In this section, we have showed several ways in which iterators
are defined and used. Undoubtedly, the annotations and explana-
tions here reflect our own biases (and we indeed show how they
are realized in our “fractional permission” system), but the code
itself is conventional. In the following sections, we survey previ-
ously described alias control systems and the extent to which they
can describe what is going on in the code.

3. Ownership-based Alias Control
Ownership is a recognized alias control technique. With ownership,
each object has another object as its owner. The root of the owner-
ship hierarchy is often called “world.” Clarke and others propose a
owners-as-dominator model: any reference to an object must pass
that object’s owner [10, 11]. This encapsulation property prevents
any access to an object from objects outside its owner, but rules
out external iterators: If the iterator is totally outside of the rep-
resentation of the collection object (Figure 7(a)), then the iterator
is not able to access the internals. On the other hand, putting the
iterator as part of the representation enables the references to the
internals, but disables the references from outside of the collection
(Figure 7(b)).

Since the iterator is a common idiom in OO programs, alterna-
tive models have been proposed. Clarke and Drossopoulou [9] per-
mit iterator-like objects that violate owners-as-dominators to exist
in stack variables but not to be stored in fields. Because they only
have dynamic extent (rather than indefinite extent), these dynamic
aliases are deemed less dangerous than “static aliases.” However,
the typing of these dynamic aliases requires that the collections be
in scope. Therefore, the dynamic aliases solution cannot handle the
iterator usages in Figs. 4, 5 and 6

A related relaxation of owners-as-dominators was formalized
by Boyapati and others [4]. Here objects of inner classes are per-
mitted to access the internals of the outer object, even though the
inner class object is not necessarily owned by its outer object. An
iterator implementation is declared as an inner class implementing
a global interface. Again, the aliasing between the object and its
inner class objects is deemed less hazardous since it is restricted to
a single compilation unit. Originally, Boyapati permitted iterators
to be passed outside of the scope of collections (as in Fig. 4), but in
this case, the effects were imprecise: they operated on the “world.”
This extension proved unamenable to ownership-based checking of
synchronization, and was dropped in subsequent work [3, page 36].

Ownership domains permit an owner to make some owned
objects public while protecting others from external access [1]. The
objects owned by an owner are partitioned into several “domains.”

39

……

List

ListNode ListNode

Iterator

……

List

ListNode ListNode

Iterator

……

List

ListNode ListNode

Iterator
public

(c)(a) (b)

Figure 7. Owners-as-dominators (relaxed in (c)).

For instance, a collection object may own two domains: one for its
internal representations and one for iterators. The latter domain can
be public (see (c) in Figure 7). The iterator object can be referred to
by outsiders (since it resides in a public domain), and it is able
to access internal representations of the collection object (since
its domain has the same owner as the representation domain). To
precisely describe the states the iterator needs to access, Smith [20]
proposes that the effects of an iterator be expressed as accessing
state in its “sibling” domains, all other domains belonging to the
same owner. This only works if the iterator is owned by the same
object as the collection. Again there are problems with trying to use
the iterator outside of the context of its collection’s owner because
then the sibling would be unknown.

Another alternate model is the “owners-as-modifier” model
which distinguish between read-write and read-only references
[13]. Read-write reference must pass through objects’ owners,
while read-only references may be created arbitrarly. The Universe
type system distinguish three kinds of reference: peer references
between objects in the same context; rep references from an ob-
ject to any directly owned objects; readonly (or any) references
between objects in arbitrary contexts. The last kind of references
can not be used to modify objects. External iterators can be im-
plemented in this model (see Figure 8), since any iterator object
may use the readonly reference (represented as dashed line) to the
internal representation of collections. Modifying iterators need to
delegate mutations to the collection, which in turn must rely on
runtime support to downcast the any reference to a rep reference.

……

List

ListNode ListNode

Iterator

Figure 8. Owners-as-modifiers.

There are two difficulties, however. One is that object invari-
ants cannot be guaranteed for objects referred to with “any” refer-
ences. Thus a non-mutating iterator cannot rely on invariants of the
collection (or its internals) to hold. Indeed, because of concurrent
modifications, it is the case that a non-mutating iterator may fail
unexpectedly. Furthermore, a mutating iterator must be a “peer” of

the collection and thus cannot be used outside the context of the
owner of the collection.

4. Handling Iterator Validity
Recently, a number of researchers tackled the problem of iterator
validity, that is avoiding CME in Java-like languages. In particular,
participants considered avoiding interference between calls that
directly modify the collection and interleaved uses of one or more
iterators to read that collection.

One solution, proposed by Weide [21] is to modify the seman-
tics of the language such that the iterator copies out the contents
of the collection upon its creation, and copies them back when it
is finished. Changes made to the collection while the iterator is in
use may be overwritten when the iterator is ended, using an ex-
plicit function in the collection. This behavior may be specified and
checked using the standard tools of full program verification. These
changes would affect neither asymptotic efficiency of iterator usage
nor expressiveness when interference does occur; however, they are
a significant departure from current usage.

The C# patterns for iterator usage and implementation are syn-
tactically different from those of Java; in particular, enumerator
functions can define iterators using yield return statements.
Even so, the underlying problems of interference are generally the
same: changes to the collection conflict with use of an iterator. Ja-
cobs, Piessens, and Schulte [15] suggest defining reads clauses for
enumerator methods that would declare some owned state as im-
mutable while the enumerator-controlled loop is in effect, roughly
correlating with the lifetime of the iterator in Java. This tracks well
with C# enumerators’ reading but not altering their collections; mu-
tating iterators are not supported. Iterator objects can only be used
directly to control loops, and may not be used independently of the
collection. Every object is given special fields representing both
overall writability and number of current readers. The reads clause
is translated as modifications of and conditions on these fields,
which may then be checked using the Boogie static verifier or using
dynamic checks if necessary.

One may instead use fields to directly model the standard
“timestamp” approach. Every collection is given an integer field
which is incremented whenever the collection is modified; every
iterator has an integer field with the value of the collection’s times-
tamp at the time of the iterator’s creation. David Cok [12] has
instrumented this approach to iterators using model fields in JML.
As these timestamps are only implemented in model fields, there is
no concrete state underlying them. Rather than throw an exception
when the collection’s integer exceeds that its iterator, requirements
on the relative values of the integers are included in the formal
specification of the iterator. This specification can then be checked
using ESC/Java2. In practice, the ESC/Java2 checker appears to

40

detect both legal and illegal uses by static inference; however, the
correctness of this specification apparently cannot be proven.

Instead of specifying the values of a special fields as a signal
of whether the collection has been or can be modified, one may
directly encode modifications of the collection in an abstract predi-
cate representing the collection as a whole. Krishnaswami [16] has
done this using separation logic, whose predicates are comparable
to permissions. Both the collection and the iterator get a high-level
predicate that includes an abstract representation of the state of the
collection. Most methods of the collection both require and return
the predicate of the collection; methods that write the collection
return it with a different abstract state. Creating a new iterator con-
sumes the predicate for (permission to) the collection and produces
that of the iterator. At any time, however, the predicate for the col-
lection may be carved out of the predicate for its iterator, providing
both the collection predicate and a “magic wand” implication that
can consume the collection’s predicate to recover the iterator. This
implication essentially represents the non-collection portions of the
iterator’s state. The former may be used to call any of the collec-
tion’s methods, including creating another iterator. Thus one may
simultaneously have the predicate for the collection and any num-
ber of implications allowing one to exchange the collection predi-
cate for some iterator. This must be done to use the iterator, after
which the collection can be carved out once more. However, call-
ing a method that modifies the collection returns a predicate with
a different abstract state, which cannot be used to recover any of
the current iterators–they are useless. Because this formalization
lacks fractions [5, 8], even non-mutating iterators interfere with
each other.

Bierhoff [2] describes another linear-based system using frac-
tions and (linear) typestates. Typestates can represent sole, write,
or read access to a program variable. Both the collection and the it-
erator have permissions defined for them; these also detail state
changes in the objects themselves. For example, the hasNext
method is needed to establish that the iterator’s next is available
as a prerequisite to calling next. The absence of this typestate
precludes calling the method.

The iterator method returns a linear implication which con-
sumes the permission for the collection, and produces only per-
mission for the iterator. While the collection’s permission is un-
available, methods that change it cannot be called. The finalize
method of the iterator returns the reverse linear implication, con-
suming the iterator permission and producing that of the collec-
tion. The iterator class is parametrized by the collection to permit
finalize to return permission to the collection. The iterator per-
mission may be fractional, for a read-only iterator, or unique for a
modifying iterator. The linear & is cleverly used to delay deciding
whether an iterator is read-only or fractional. If the iterator permis-
sion is fractional, collection methods that only require fractional
state may be called.

5. Explaining Iterators Using Permissions
The key issue with the design intent of the iterators is that access
to the collection must be reduced to read-only (for non-mutating
iterators) or completely prevented (for mutating iterators) while
the iterator is active. In other words, the alias control system must
be flow-sensitive. While some ownership type systems are mov-
ing to include flow-based analysis (see ownership transfer in Uni-
verses [17]), this is a significant increase in complexity.

On the other hand, systems based on linear logic (such as Bier-
hoff’s permission system or separation logic), lead to complex
management of state. Linearity is powerful but is difficult to man-
age. Fänhdrich and Deline [14] recognized this problem and de-
signed a relation called “adoption” which permitted non-linearity

to co-exist with linearity. We have since shown that adoption can
model object ownership [6].

Our permission system combines the simplicity of ownership—
allowing the iterator interface to hide the fact that it has access to
the collection internals—with the power of linearity—expressing
the constraint that the collection is encumbered by the iterator. In
this section, we describe our permissions system and how it can
account for the annotated design intent in the examples. Permis-
sions are used to give a semantics to annotations, and then a flow-
sensitive type system can be used to check that the code does indeed
follow the design intent prescribed by the annotations.

5.1 Permissions overview
A permission is a token that permits access to mutable state. Each
field in a Java program is associated with exactly one field per-
mission. This permission can be split into fractions: in order to
write a field one needs the whole field permission, but read ac-
cess is permitted with only a non-zero fraction. Permissions can-
not be copied—only transferred. As a result, although two read ac-
cesses can be carried out “at the same time” in different parts of the
program, if one or both of the accesses is a write, the permission
system will flag an error. This is the basic intuition of fractional
permissions.

In order to support information hiding and “non-linear” access
to state, we add the concept of permission nesting (a generalization
of adoption); in which an arbitrary permission (often composite) is
“nested” in a field permission. As a result, one who has access to
the field (and knowledge of the nesting relationship) can get at the
nested permissions, by “carving” them out of the field permission.

Nesting is used for two main
purposes. On the left, we are
using nesting to model “data
groups.” The square represents
permission to access a field
with a pointer value. The oval
shows the (model) field “All.”
The digram demonstrates that
the permission to access the
field is nested in “All.”

On the right, we are using nest-
ing to express ownership as well
as data groups. We now see that
the field (small square near the
top) points to a node whose en-
tire state is nested in the first ob-
ject’s “All” mode field. This ob-
ject has two fields (think of them
as a data field and a next field), the
second of which points to another
owned node. The second node has
a “null” next pointer.

Carving temporarily removes the permissions from the field
permission; the field permission now has a “hole” in it. This sit-
uation is represented by a kind of “linear implication” Ψ −+ Ψ′,
where Ψ is the nested permission and Ψ′ is the nester field permis-
sion.

(o.f → r) −+ o.All o.f → r

41

The permission Ψ −+ Ψ′ can be read as referring to all the state
implied by Ψ′ except that part of which is implied by Ψ. In our
permission system, “−+” (read “scepter”) functions very similarly
to “−? ” in separation logic (or “−◦ ” in linear logic). The peculiar
distinction of “−+” is that it requires that the consequent (right-
hand side) include the antecedent (left-hand side).

Carving is used to get any nested state. Thus to read the next
field of the first node, we first carve out the node and then carve the
field out:

The inversion of “carving” is “replacing.” Replacing is simply
linear modus ponens: it takes Ψ −+ Ψ′ and Ψ and puts them
together to retrieve the consequent Ψ′. In standard linear fashion,
the process consumes both of the inputs (the antecedent and the
implication).

Our permission logic also includes composition (represented
by a comma), conditionals (to handle possibly null pointers) and
existentials.

5.2 Annotation semantics
In current work [7], we describe the semantics of annotations pre-
cisely in terms of permissions. Here, we content ourselves with in-
formal explanation:

data groups State encapsulation (such as All referring to all the
state of an object) is handled by unit-typed fields that nest the
state that belongs to it.

ownership Ownership is represented by nesting x.All of the
owned object x in a field (ownership domain) of the owner.
Multiple ownership domains [1] can be modelled. Every own-
ership domain is nested in this.All .

readonly ownership Read-only ownership is represented by nest-
ing an unspecified fraction of the state of the owned object in
the owner’s domain.

borrowed Borrowed references are references that are transmitted
without permissions; in order to access state through a “bor-
rowed” parameter (or receiver), a method uses effects:

effects Method effects are represented by permissions that are
passed to the method and which are returned afterwards.

unique A unique reference is always associated with permission
to access the object it refers to (if any). For instance, a unique
return value will be returned along with the necessary permis-
sions.

from As with unique , a from return value has permissions to
access it returned by the method, but unlike unique , these
permissions encumber the effect named, the permissions for the
effect are returned in linear implication:

(r.All) −+ (effect, v)

where v is an unspecified permission. In other words, the per-
missions represented by the effect are unusable until the state
pointed to by the return value is no longer needed. At this time,

iterator :
∀zt · (zt.All →
∃rv · r.All, (r.All −+ zt.All, v))

Figure 9. The permission type of the iterator() method.

the linear implication can be applied, releasing the effect and
some unknown “residual” permission (v) that can be discarded.
In our examples, the v is the iterator permission itself bereft of
permission to access the collection.

Annotations are translated into permissions using a simple sub-
stitution (not described here). An example is given in Fig. 9 and is
explained below.

5.3 Controlling access
If one has permission to access an object’s state, the carve oper-
ation gives access to the state nested in that object (other objects
owned by it). Allowing this situation in general would break en-
capsulation; indeed it would permit clients to mutate list internals,
resulting in complete chaos. The difficulty this situation presents
cannot be solved simply by permissions because one still wishes to
permit the client to call methods that use the permission to access
internals. Instead, protection of internals is solved in the traditional
way with visibility: carving is only permitted to access visible state.

The iterator examples show the list iterators accessing internals
of the list, including its list nodes. In order to allow iterators to
do these operations, we use Java’s nested classes. The ListIter
and ListRemoveIter classes are made (private) nested classes of
List and thus given access to the list internals. The ListNode class
serves as a structure and can make its fields public.

5.4 Explaining Iterators
In the iterator() method of class List, the read-only permission
to access the list is passed to the new ListIter object so that it can
nest this permission in its ownership domain. The permission for
the effect is not returned to the caller as normal; a linear implication
Iter −+ (reads(All) , v) is returned instead. The read permission
in the consequent cannot be used, as a read permission or to reform
a write permission for the list, until the iterator is no longer in use,
However, as fractions permit splitting a permission into an arbitrary
number of read permissions, other read-only operations may be
performed on the list. Figure 9 gives the full permission type of
the method (after annotations are translated). The variables t and
r refer to the receiver (this) and return value respectively. The
variable z refers to the non-zero fraction of access required and v
refers to the unspecified permission to be discarded when the linear
implication is applied. The riterator() method is similar except
that it requires, and so makes inaccessible, full (write) permission
to the list.

The type in Fig. 9 does not disclose that the iterator uses owner-
ship, or indeed anything in how the iterator is implemented. Indeed
the permission implication r.All −+ (zt.All, v) is implemented in-
ternally by an empty permission since the return value’s state r.All
includes the entire list read permission on the right-hand side of the
implication. But the client does not need to know this; should not
know this fact. The information hiding is essential to ensure that the
list permission is inaccessible until the implication is applied to the
iterator permission, consuming it and releasing the list permission.

In the iterator implementation, as the iterator is temporarily
the owner of the list, it may be used without explicit mention
of the list. In the implementation of the next method, we can
access cur.next by first carving the (read-only) permission list
from the iterator’s “All” permission (provided by the caller per
the method effect), and then getting access to the node by carving

42

its permission from the list, and finally to get access to the field
by carving its permission from the node’s “All” permission. This
permission is existential (the next pointer is not determined by the
node) and must be unpacked. At this point, we have a series of
permission implications plus one field permission:

zl.All −+ t.All, zc.All −+ zl.All,

(∃p · z(c.next→ p, . . .)) −+ zc.All zc.next→ n

Here t is the value of this, l for list, c for cur and n for its next
field. When we are done, the entire set of permissions can be packed
back up into t.All and returned to the caller. The caller need not be
aware of the existence of the list at all.

For example, the Util methods work by borrowing iterators: its
caller provides the permissions that are then returned. It is impos-
sible to also provide permission to access the collection in a con-
flicting way—writing the collection is precluded by the presence of
a read permission in the consequent of the linear implication–and
thus call-back problems are prevented.

Remove iterators avoid throwing a CME because they nest the
full write permission for the list preventing alteration of the list
state until the remove iterator is no longer used. And, because
creating iterators requires at least some part of the list’s state, no
other iterator can be created while the remove iterator is in use.
Neither can a remove iterator be created if another iterator is in use.
This is more strict than Java requires, but does ensure the absence
of CMEs.

Regular iterators are also prevented from throwing a CME. In
Fig 2, after the application requests for the iterator it to be created,
the collection is encumbered. A linear implication for recovering
the access to the list is made available. This linear implication can
be applied at any time (in the static flow-analysis of the method).
However, once it is applied, permission to access the iterator is
irrevocably consumed. Thus, once the permission type checker is
“forced” to apply the implication to permit a collection mutation,
the iterator is no longer usable and later uses of the iterator will not
type check.

The class to concatenate two iterators (see Fig. 5) requires own-
ership of the iterators, so that effects on them can be attributed to
the compound iterator. This can be granted (the iterator was es-
sentially “unique” before) at the price that the respective collec-
tions are still encumbered. In order to unencumber the collections,
it necessary to retrieve the permissions for the iterators now nested
in compound iterator; this can be done when the compound iterator
is being discarded.

Delegation of iterator creation (see Fig. 6) uses an iterator on a
newly constructed collection. The “from ” annotation is not actu-
ally needed since the linked nodes are copied; it merely expresses
the design intent that the collection should not be changed while
the iterator is active.

5.5 Analysis
Our current work [7] gives a type system based on permissions. It
is flow-sensitive, keeping track of the current permissions at each
point in the program. When an field access is processed or a method
is called, it checks whether the operation can be permitted. Nest-
ing, carving and replacing operations are carried out implicitly as
needed, perhaps several levels deep as the example for cur.next
showed. The type system described is non-algorithmic, but we have
a (more complex) algorithmic type system that is implemented for
Java. Currently the implementation does not support “from” anno-
tations; however, adding support for them appears straightforward.

5.6 Comparisons
Compared to approached based solely on ownership, our system is
able to detect when an iterator is invalidated.

Compared to approaches based on program verification, our
permissions system is not as powerful. It is based on logic that
is similar to power to decidable logics. It remains to be shown
that our permission type system (not given here) is decidable.
By abstracting out just the access to mutable state, permissions
represent a more high-level view of the program than any system
that uses model fields (say) to represent version stamps.

Compared to approaches based on linear logic, our system is
simpler because it uses information hiding (ownership). Both Bier-
hoff’s and Krishnaswami’s approaches have explicit mention of
the collection state in the iterator state. Thus it appears that these
systems could not support iterator patterns that use the iterator in
places where the collection is unknown. Indeed while we require
both aliasing annotations and effects annotations, the effect anno-
tations on iterators are very simple. On the other hand, Bierhoff’s
system tracks type state too: a positive return from hasNext() en-
sures that next() can be called safely.

5.7 Other Applications
The “from” annotation is a general solution to the problem of how
to grant temporary access to internals. Consider a buffered stream.
Internally it has an unbuffered stream. Sometimes a client may
wish to perform actions on the unbuffered stream and then resume
using the buffered stream. One technique is for the client to be
given access to the underlying stream and “hope” that the client
will remember to flush the buffered stream before any unbuffered
access. A less error-prone approach is to use an enforced “from”
annotation:

class BufferedOutputStream

implements OutputStream {

...

writes(All)

from(All) OutputStream getUnderlying() {

flush();

return underlying;

}

}

Here the underlying stream encumbers the buffered output
stream. If the client wishes to use the buffered stream again, it
must give up access (permission) to the underlying stream. Thus
we see that “from” is a general solution for a class of problems.

6. Conclusion
We have informally described the concept of permissions which
combines an ownership-like system (nesting) with linear types, and
is flow sensitive. Permissions can be used to express the design
intent on our examples; it can be enforced that a collection cannot
be modified while non-mutating iterators are active. The system is
flexible enough to permit several interesting iterator usage patterns
with minor annotation overhead. The “from” annotation can also
be used more generally whenever a class wishes to grant temporary
access to internal data structures.

References
[1] Jonathan Aldrich and Craig Chambers. Ownership domains:

Separating aliasing policy from mechanism. In Martin Odersky,
editor, ECOOP’04 — Object-Oriented Programming, 18th European
Conference, Oslo, Norway, June 14–18, volume 3086 of Lecture

43

Notes in Computer Science, pages 1–25. Springer, Berlin, Heidelberg,
New York, 2004.

[2] Kevin Bierhoff. Iterator specification with typestates. In SAVCBS ’06:
Proceedings of the 2006 conference on Specification and verification
of component-based systems, Portland, Oregon, USA, pages 79–82.
ACM Press, New York, 2006.

[3] Chandrasekhar Boyapati. SafeJava: A Unified Type System for
Safe Programming. Ph.D., Massachusetts Institute of Technology,
February 2004.

[4] Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, and
Martin Rinard. Ownership types for safe region-based memory
management in Real-Time Java. In Proceedings of the ACM
SIGPLAN ’03 Conference on Programming Language Design and
Implementation, San Diego, California, June 8–11, ACM SIGPLAN
Notices, 38:324–337, May 2003.

[5] John Boyland. Checking interference with fractional permissions. In
R. Cousot, editor, Static Analysis: 10th International Symposium, San
Diego, California, USA, June 11-13, volume 2694 of Lecture Notes in
Computer Science, pages 55–72. Springer, Berlin, Heidelberg, New
York, 2003.

[6] John Boyland and William Retert. Connecting effects and uniqueness
with adoption. In Conference Record of POPL 2005: the 32nd
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, Long Beach, California, USA, January 12-14, pages
283–295. ACM Press, New York, 2005.

[7] John Boyland, William Retert, and Yang Zhao. Comprehend-
ing annotations on object-oriented programs using fractional per-
missions. Submitted to OOPSLA ’07. Manuscript available at
http://www.cs.uwm.edu/faculty/boyland/papers/oo-permissions.pdf.

[8] Stephen Brookes. Variables as resource for shared-memory programs:
Semantics and soundness. In Twenty-second Conference on the
Mathematical Foundations of Programming Semantics, Genova,
Italty, May 24–27, Electronic Notes in Theoretical Computer Science,
158:123–150, 2006.

[9] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation
and the disjointness of type and effect. In OOPSLA’02 Conference
Proceedings—Object-Oriented Programming Systems, Languages
and Applications, Seattle, Washington, USA, November 4–8, ACM
SIGPLAN Notices, 37(11):292–310, November 2002.

[10] David Clarke. Object Ownership and Containment. PhD thesis,
University of New South Wales, Sydney, Australia, 2001.

[11] David G. Clarke, John M. Potter, and James Noble. Ownership
types for flexible alias protection. In OOPSLA’98 Conference
Proceedings—Object-Oriented Programming Systems, Languages
and Applications, Vancouver, Canada, October 18–22, ACM SIG-
PLAN Notices, 33(10):48–64, October 1998.

[12] David R. Cok. Specifying Java iterators with JML and Esc/Java2. In
SAVCBS ’06: Proceedings of the 2006 conference on Specification
and verification of component-based systems, Portland, Oregon, USA,
pages 71–74. ACM Press, New York, 2006.

[13] W. Dietl and P. Müller. Universes: Lightweight ownership for JML.
Journal of Object Technology, 4(8):5–32, October 2005.

[14] Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical
linear types for imperative programming. In Proceedings of the
ACM SIGPLAN ’02 Conference on Programming Language Design
and Implementation, Berlin, Germany, June 17–19, ACM SIGPLAN
Notices, 37:13–24, May 2002.

[15] Bart Jacobs, Frank Piessens, and Wolfram Schulte. VC generation for
functional behavior and non-interference of iterators. In SAVCBS ’06:
Proceedings of the 2006 conference on Specification and verification
of component-based systems, Portland, Oregon, USA, pages 67–70.
ACM Press, New York, 2006.

[16] Neelakantan R. Krishnaswami. Reasoning about iterators with
separation logic. In SAVCBS ’06: Proceedings of the 2006 conference
on Specification and verification of component-based systems,
Portland, Oregon, USA, pages 83–86. ACM Press, New York, 2006.

[17] Peter Müller and Arsenii Rudich. Formalization of ownership transfer
in universe types. Technical Report 556, ETH Zurich, 2007.

[18] James Noble. Iterators and encapsulation. In TOOLS Europe 2000,
pages 431–442. IEEE Computer Society, Los Alamitos, California,
2000.

[19] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle.
Generic ownership for generic Java. In OOPSLA’06 Conference
Proceedings—Object-Oriented Programming Systems, Languages
and Applications, Portland, Oregon, USA, October 22–26, ACM
SIGPLAN Notices, 41(10), October 2006.

[20] Matthew Smith. Toward an effects system for ownership domains. In
7th ECOOP Workshop on Formal Techniques for Java-like Programs,
Glasgow, UK, July 26. 2005.

[21] Bruce W. Weide. SAVCBS 2006 challenge: Specification of iterators.
In SAVCBS ’06: Proceedings of the 2006 conference on Specification
and verification of component-based systems, Portland, Oregon, USA,
pages 75–77. ACM Press, New York, 2006.

44

