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ABSTRACT

Linear logic and related logics (such as separation logic and
fractional permissions) have proven useful in verifying con-
current programs because they make it easy to reason about
heap separation properties. However “volatile” fields in
Java are difficult to reason about in strictly linear fashion.
Volatile is much more easier handled using non-linear con-
cepts such as immutability and ownership.

1 INTRODUCTION

Concurrent programs in which threads share mutable state
use synchronization and/or volatile fields to ensure thread
safety. In Fig. 1, a map implementation synchronizes mod-
ifications to the map (as in put), but does not synchronize
read-only access (as in get). Avoiding synchronization in
the common, non-modifying case, can improve concurrency.
This is thread-safe only because (1) access to the underly-
ing map is through a volatile field, and (2) the underlying
map is left immutable. Immutability means that the under-
lying map is never mutated while it is being read. Volatility
ensures that get always gets the latest version of the map.

Figure 2 gives another example of using volatile: here
multiple threads may generate data (using push) and a single
thread periodically polls this data (using pull). The sample
thread may miss data that arrive too quickly, but does not
receive multiple copies of a single event. Even though it
never uses synchronization, this code is thread-safe under the
assumption that only one thread samples the data. In the
case of multiple sample threads, the update of the collected
flag can lead to a data race.

This paper informally discuss how such uses of volatile
fields can be shown thread-safe through program analysis.
Section 2 discusses the difficulties faced when using concur-
rent separation logic. Then Sect. 3 describes how “owner-
ship” type systems solve the problem.

2 LINEARITY

Concurrent Separation Logic (CSL) [4] uses a variant of lin-
ear logic to reason about concurrent programs. Programs
can be shown thread-safe using local reasoning alone by sep-
arating the heap among threads. The separation is not fixed,
and threads can transfer access to state through mutual
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public class RarelyChangingMap<K,V> {

volatile Map<K,V> immMap;

...

public V get(Object k) {

return immMap.get(k);

}

public V put(K key, V value) {

synchronized (this) {

Map<K,V> copy = new HashMap<K,V>(immMap);

V old = copy.put(key,value);

immMap = copy;

return old;

}

}

}

Figure 1: Using volatile for a thread safe Map.

public class Sampler {

public static class Datum {

public int x, y;

boolean collected;

public Datum(int x, int y) {

this.x = x; this.y = y;

}

}

private volatile Datum datum;

public void push(int x, int y) {

datum = new Datum(x,y);

}

public Datum pull() {

Datum d = datum;

if (d.collected) return null;

d.collected = true;

return d;

}

}

Figure 2: Sampling data from multiple threads.

exclusion blocks: l.acq(); ...; l.rel() or more simply
atomic { ... }. After acquiring the lock or entering the
atomic block, the thread gets access to a portion of the heap
indicated by a “shared invariant.” The invariant must be
re-established at the point the lock is released or the atomic
block is exited, and the access of this portion of the heap is
removed from the thread. Since the invariant may include



existentials, it may refer to a different section of the heap
than it did before.

Extending this model to volatile variables can be done
by converting volatile variable accesses into atomic blocks,
and then adding extra actions inside the atomic blocks. For
example the code in Fig. 1 can handled by using existentially
quantified fractions [2] to model immutability. Inside the
atomic block, the existential is opened, the fraction is divided
in half, and then it is re-packaged.

Figure 2 can be handled if the atomic block is extended to
include the assignment to d.collected. Alternately, auxil-
iary state [9] can be used: a new “model” field is added
to the object that has value NEW, READ or OLD. When
in the NEW state, the field comes with permission to write
the collected field. This permission is removed if the field
is read in this state, in which case the state is changed
to READ. Then if the state still READ at the time the
collected field is set, it is changed to OLD and is accom-
panied with an immutable permission for d.collected. If
the field is read in the OLD state, a fraction is split off to
be used in the conditional return. Moving the state to OLD
requires a new atomic block just for updating the auxiliary
state. Since the model field is added just for verification but
not present at runtime, the empty atomic block can then be
optimized away.

This use of atomic blocks to model volatile can be jus-
tified because at the hardware level, volatile accesses cannot
be simultaneous. However, it is unsatisfying. If one desires
a more high-level description that avoids auxiliary state, it
seems necessary to use nonlinear reasoning. The field could
be read not at all between writes, or once or multiple times.
The ability to use some fact not at all, once or multiple times
is a characteristic feature of traditional logic as opposed to
linear logic.

Separation logic can be defined on top of the logic of
bunched implications [8] which includes both linear and non-
linear aspects. Indeed even Girard’s original linear logic [7]
has the ! and ? modalities which permit a logical term to be
duplicated or ignored. The non-linear predicates available
however in CSL do not refer to the heap.

3 OWNERSHIP

In an ownership type system (such as SafeJava [1]), each ob-
ject is assigned an owner which never changes. A concurrent
program is thread-safe if all accesses to (potentially) muta-
ble fields occur dynamically inside of a synchronization on
the object whose field is accessed or any of its (transitive)
owners. Thread safety depends on encapsulation so that no
object is ever accessed outside of the dynamic context of its
owner (owners as dominators, as formalized by Clarke [5]).
Volatile fields can be handled as a loop hole—volatile field
accesses are unchecked. This is thread-safe because any ac-
cess of the state reached through the volatile field must be
in the context of its owner.

In principle, the second example (Fig. 2) can be handled
by indicating the objects of type Datum belong to the reading
thread once they are created.

The first example is also amenable to analysis using an
ownership system provided that the system includes a con-
cept of immutability (e.g. immutable objects have a distin-
guished owner).

The relative ease with which these examples can be han-
dled (volatile simply is an escape hatch) is due to the
permanent (non-linear) nature of ownership in these sys-
tems. Ownership transfer in defined in some systems, but
always involves a linear (and hence flow-sensitive) aspect
which brings back the complexity of linear systems. Some-
times indeed the complexity exceeds that of CSL.

We have been investigating how to combine nonlinear-
ity (ownership) and linearity (uniqueness) at a formal level
by building on adoption [6] which formalizes ownership. In
adoption, a mutable object is irrevocably adopted by an-
other object. Then whenever one has access to the “parent,”
one also has (indirect) access to the “child.” Direct access
requires that the child be “focused” upon. Adoption is a
global changing non-linear property of a program, although
change is only in one direction. New adoption relations can
be added, they never go away. We have defined a kernel
logic that supports linear-style permissions, fractions and
adoption (generalized as “nesting”) [3].

4 CONCLUSIONS

I first introduced two examples of volatile usage and ex-
plained the difficulties in using a linear system to verify
them. Then I explained how they can be handled more eas-
ily in an ownership type system. I hope therefore to increase
interest in how one can formalize ownership as a nonlinear
subsystem in a mostly linear logic.
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